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MATRIX METHODS FOR DETERMINING THE LONGITUDINAL-STABILITY
DERIVATIVES OF AN AIRPLANE FROM TRANSIENT FLIGHT DATA*

By Jaaes J. DoNEGAN

SUMMARY

Three matriz methods are presenied for determining the
longitudinal-stability derivatives from iransient flight data.
One method, which requires four measurements in time-history
Sform and wtilizes the incremental tail load to separate the pitch-
ing-moment derivatives Cpm; and Cny, permits the computation
of all the longitudinal-stability derivatives. A second method
requires three measurements and one supplemental assumption,

Cn .
namely 5—&=00nst¢mt. This method gives the most infor-
mj

mation for the least amount of work. The third method re-
quires two measurements and two supplemental assumptions,

Cn
namely #=Cmtant and 0.,,=--%£ Oy (where Cuy and Cy,
mg

are the elevator-effectiveness derivatives, z, 18 the tail length,
and G is the mean aerodynamic chord). An inspection of the
results obtained for the various methods shows the scatter which
18 typical of this type of analysis of flight data.

INTRODUCTION

The determination of the longitudinal-stability derivatives
from flight date is a relatively difficult task because the
wind-tunnel technique of permitting only one variable to
change at a time, while constraining all the rest of the
variables, cannot always be used. It is in the analysis of
such flight-test data that matrix techniques employing the
equations of motion seem to be particularly useful.

Currently, much work is being carried aut on the deter-
mination of stability derivatives directly from flight data but
as yeot this work is still in the preliminary stages. The
matrix methods for the determination of stability derivatives
from transient flight data that are developed herein are an
addition to this work. The previous work done on the
determination of longitudinal-stability derivatives is exten-
sive, and no attempt is made to summarize it since this
summarization has been adequately done in reference 1.

In the present report three methods are developed and
presented for determining the longitudinal-stability deriva-
tives from transient flight data. In these methods the
expressions for some of. the stability derivatives are in the
form generally used in stability calculations. The first
method requires the combination of four measurements in
time-history form, two of which must be ineremental elevator
deflection and ineremental tail load and the other two

measurements can be chosen from a possible three, namely
incremental load factor, pitching velocity, and angle of
attack. The method demonstrates the use of the tail load
to separate the pitching-moment derivatives Cm; and Cn,
and to determine the downwash derivative O¢/da.

The second method, which is more restricted, requires a
combination of three measurements (in time-history form),
one of which must be incremental elevator deflection and the
other two measurements can be chosen from a possible three,
namely incremental load factor, pitching velocity, and angle
of attack. This method also requires one supplementary
assumption, namely ¢, =MCw;, Where X is & constant.

The third method uses & combination of two measurements
(in time-history form), one of which must be incremental
elevator deflection and the other one may be chosen from
incremental load factor, pitching velocity, angle of attack,
and so forth. The method also requires two supplementary

assumptions, namely Cn,=\Cn; and 0.,6=%C’L6 (where

Cn; and Cr, are the elevator-effectiveness derivatives, z, is
the tail length, and ¢ is the mean aerodynamic chord). By
using & modification of the third method, it is shown that
considerable information can be obtained from & single time
history.

The methods are demonstrated by applying them to flight
data obtained from tests of & medium jet bomber, and a
comparison of the derivatives obtained by the various
methods gives an indication of the accuracy which can be
expected from dats analysis by matrix techniques based on
the longitudinal equations of motion.

SYMBOLS

b . wing span, it

¢ mean gerodynamic chord

¢, C; - constants defined in appendix E

L 1ift coefficient, L/gS

Cr, -rate of change of airplane lift coefficient with
angle of attack per radian; see appendix B

Cr, rate of change of lift coefficient with elevator
deflection per radian; see appendix E

Gy, rate of change of lift coefficient with & per
radian; see appendix E

Oy; rate of change of lift coefficient with pitching

velocity per radian; see appendix E

1 Bupersedes NACA TN 2002, “Matrix Methods for Determining the Longitudinal-Stability Derivatives of an Airplane From Transient Flight Data” by James J. Donegan, 1053,
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Cn pitching-moment coefficient of airplane,
M/qSe

rate of change of pitching-moment coefficient
with angle of attack per radian; see ap-
pendix B

Cus rate of change of pitching-moment coefficient

with elevator deflection per radian; see
appendix E

Cry rate of change of pitching-moment coefficient
with pitching velocity per radian; see
appendix E

rate of change of pitching-moment coefficient
with & per radian; see appendix B

pitching-moment coefficient of horizontal tail
surface, M,/q.Sc,

acceleration due to gravity, ft/sec/sec

airplane moment of inertia, slug-ft?

airplane radius of gyration about pitching
axis, 16

lift, 1b

airplane mass, W/g, slugs

pitching moment of airplane

airplane load factor

2P
~ ]

eI

dynamic pressure, p—2V—2) Ib/sq ft

wing area, sq ft

horizontal-tail area

time, sec

true velocity, ft/sec

airplane weight, 1b

length from center of gravity of airplane to
aerodynamic center of tail (negative for
conventional airplanes), it

coefficients of transfer function relating 6
and §; see appendix E

wing angle of attack, radians

o, tail angle of attack, radians

flight-path angle, radians

nnr 3

Ega”

Kl: K27 Kb; -Kd

R

Y
6 angle of pitch, a4~
b) elevator deflection, radians
€ o downwash angle, radians
A=
7 tail efficiency factor, ¢ /g
p mass density of air, slugs/cu ft
T dummy variable of integration
Matrix notation:
1Rl rectangular matrix
square matrix
{1} column matrix

(&) integrating matrix (see table I)
11B,1] [1DI], || E|] rectangular matrices defined in appendix E

Subscripts:

7 - denotes row elements in matrix
t tail

WB wing-body combination

For sign conventions used, see figure 1.
A dot over a symbol deno'oes the first derivative with

respect to time, and two dots over a symbol denote the
second derivative with respect to time.
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@cg.
% " |
.
Relative wind . 29:C.
——
8
AL,
Tangent to-
flight path ,-Reference
’I
-~ \M\\ \L,Flight path
—
Fieure 1—Sign conventions employed. Positive directions shown.
The symbol A refers to an incremental value. Inter-

mediate variables such as Au, Af, Ac, Ap, and Ay and the
constant K, are defined in appendix E.

OUTLINE OF METHODS

The three methods are based on the longitudinal equations
of motion for horizontal flight and use matrix methods to
analyze time histories of measured quantities. The equa-
tions of motion used in each of these methods are expressed
in the form

. %An=aLaAa+0Léa+oL&a+aL,M (1)
é_o O Bt Criet O+ Oy AB @)

These equations apply to a rigid airplane and are based
on the usual assumptions of linearity, small angles, and no
loss in airspeed during the maneuver. The equations are
further restricted to the range in which the variation of the
derivatives is linear and also to conventional wing-tail
configurations in which the major contribution to damping
in pitch is due to the horizontal tail. All the variables
are given in incremental form messured from a steady-
flight trim condition.

As indicated in reference 2, the four values A, &, 6, and
A8 in equations (1) and (2) are linearly dependent; therefore,
if four simultaneous equations are formed to determine
either the force or moment derivatives, they cannot be
solved uniquely for the unknowns.

For purposes of analysis the moment equation (2) is
integrated once and expressed in the form

é_a Ou. [ Aadit Cryhot-CsA0+Co, f ‘a0dt (3
(4 0 0

This form permits the use of numerical integrating methods
that are more desirable than numerical differentiating
schemes when applied to flight date. Integrations of the
variables are performed by use of an integrating matrix
|C]| derived in reference 3 and given in table I herein. For

t
instance, a time history ofj; Andt may be obtained from
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TABLE I.—INTEGRATING MATRIX |C|

0 0 0 0 0 0 0 0
5 8 —1 0 0 0 0 0
4 16 4 0 0 0 0 0
4 16 9 8§ —1 0 0 0
4 16 g8 16 4 0 0 0
4 16 8 18 9 8 —1 0
4 186 8§ 18 8 18 4 0
4 18 8§ 16 g 18 9 8
4 18 8 16 8 16 8 18
4 16 8§ 16 g 16 8 18
AL 4 18 8§ 16 § 18 8 16
ICl=== 4 16 8§ 16 8 16 8 18
12 4 16 8 16 8 16 8 16
4 16 8 18 8§ 16 8§ 16
4 18 g 16 g 16 8 16
4 18 8 18 8 16 8 16
4 16 g8 18 8 18 8 16
4 18 8 16 8 16 8 16
4 18 8 16 8§ 16 8 16
4 16 8 16 8 16 g8 18
time history of An as follows:
i
{ [ anat}=jclian) @

The integrating matrix [|C]| given in table I may be used
for any time interval Af; most of the computations of this
report are based on & time interval of A{=0.1 second. This
interval may be too large in some cases, and, if greater
accuracy is desired, a shorter time interval may be chosen.

The essential differences in each of the methods are in
the number of quantities to be measured. Method A
requires four basic measurements in time-history form to
determine all the derivatives. Method B requires three
measurements and one supplemental assumption, namely
Omy=N0m;. Method C requires two measurements and two

supplemental assumptions,namely O, =NCy; 2nd C’,,.,=% C,.

All measurements of flight data used are time histories of in-
cremental values measured from a trimmed level-flight initial
position. The development of the equations for each method
is covered in appendixes A to C; in the body of the report
the methods are outlined by stating the pertinent equations
in the order of computation. Since these computations make
extensive use of least-squares procedures and are greatly facil-
itated by the use of matrix algebra, most of the equations
are given in matrix form,

METHOD A

Of the four basic measurements required with method A,
two must be incremental elevator angle and incremental
tail load and two other measurements can be chosen from
a possible three, namely incremental load factor, pitching
velocity, and angle of attack. In this report, incremental
load factor and pitching velocity are used.

The procedure of computation with method A (see ap-
pendix A for development) is as follows: -

(1) Compute a time history of rate of change of angle of
attack & from

&=a—%

An (5)

!

0 0 0 0 0 0 0 .
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0 .
4 0 0 0 0 0 0 .
9 8 -1 0 0 0 0 .
8 16 4 0 0 0 0 .
8 16 9 8 -1 0 0 .
8 16 8 16 4 0 0 .
8 16 8 16 9 8 -1 .
8 16 '8 16 8 16 4 .
8 16 8 16 8 16 9 ,
8 16 8 16 8 16 8 .
8 16 8 16 8 16 8
8 16 8 16 8 16 8
8 18 8 16 8 16 8
or .
vt =18 __._g._ A
{a}={6 V{ n:}

‘ .
) Caleulate time histories of A, Ao,f A8 d, f’Aa dt,
0 0

t (r

andf J; AS dr dt by using the integrating matrix ||C]| and
0

the time histories of &, 6, and Ag; for example,

{Aas}=]|C|[ { s} (6)

(8) Determine C, and Cp, by least squares from the
relation
w
qS

An

O, Aat Oy, Ad= (7)

or
Ccy_W
1B e} =g (am)

(4) Compute the coefficients K;, K; K;, and K of the
transfer function relating pitching velocity and elevator
deflection by the use of the method of reference 4 and the
equation

K, A0+E, fo ‘A8 di—EK, ﬁ “AS di—EK, fu ‘ fo "Asdr dt=—8 (8)

where the measured values of pitching velocity and elevator
deflection are used.
(5) Determine Kj, from the relation

I I
svm Cre qSc

by using the results of steps (3) and (4).
(8) Calculate time histories of the mtermedlate quantitiés
Ap and Ap by using the expressions

K]o_ .K]_ (9)

=L [VAn Z(JE—:—l) Aa]

:l:

(10)

or

{A¢,}=j_gV{An,}_%Z (V1) {A}
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and
Ay_% 2 Kioha—l Ko Oy 6 (1D
or
{Am}— {AL. }— C—I;Klo{Aa,}——Km{a,} Cr, {28}

(7) Compute Cn; by least squares from the relation

Casho=Ap (12)

. or

Cr; {Ap1}={Ap}
(8) Determine Cn, from the equation
On&=Klo— C’mé (1 3)

(9) Calculate the time history of the mtermedmte quantity
Ao from

Ao'=-q§—zé-—0,,,&Aa—GméA0 (14)
or

Cn&{A-at}

{Ao’g}"‘ {é{} —C’,,,é{Aﬂg}

(10) Compute Cp, and 0,,;8 by least squares by using the
relation

Cn, L ‘Acc d+-Chn, ﬁ ‘A8 di=As (15)
or
Can
(1R g ST OO
(11) Calculate Cry and Gy, from the following definitions:
c

OLé=2:—;- Cuj (16)

GL&=2% 0,,-,& (1 7)

(12) Determine the time history of the intermediate
quantity Ay from the equation

A1Il/=q—ls,- An— 0590—' 01,&(1 ' (1 8)
or

{A‘:{’i}:qlg {An}—COr;{6:} —Cr { &}

(13) Compute the refined values of 0y and C, by least
squares by using the relation

Cr Aa+CrAs=AY (19)

or

181 { e} =tava)
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-These values now include the effects of the Cp; and Uy,

terms in the force equation.

(14) Method A can now be iterated to obtain better
values of the derivatives by starting the process over at
step (5) with the improved C;_and (i, values from step (13)
and following the procedure again. The iteration converges
rapidly.

(15) The denvatwes (b > L b ==, and ! are found from

01,) ScV o
= ' 20
O« t S;x;"\,/;; d ( )

O 1 COng
B 7 Cmi &0
bOL, S
S, Cr, (22)
This procedure shows that the derivatives Cr,, Crg, Ui,
oC;,

Cryy Oy Cumgy Oy O, (DOI’ Oc » and 55 {may be deter-

mined by numerical opera.tlons on four time histories of
measured flight data and through the use of the theoretical
relationships given as equations (16), (17), (20), (21),
and (22).
METHOD B

Three basic measurements are used in method B, one of
which must be_incremental elevator angle and the other
two measurements can be chosen from a possible three,
namely incremental load factor, pitching velocity, and angle
of attack. In this report, incremental load factor and
pitching velocity were used.

In lieu of the fourth measurement, the supplemental
assumption is made that

Cn=2\Cp; (23)
If a value of A is not known in advance, a first approximation
(see ref. 5) is A==

& restriction on the generality of the method, it appears to
be justified since it reduces computation time to almost
one-half that required for method A and for the examples
presented herein gave results which are in good agreement
with those of method A,

The method is outlined by merely stating the appropriate
equations, the development of which is contained in appendix
B. The procedure is as follows:

(1) Compute the time history of Ax by using equations (5)

Although the assumption 7\=-;: imposes

_and (6).

(2) Determine a time history of the intermediate quantity
A% from the expression

Ag=(1+2) -1 an @24)
or

(AL = +N{0} 3 {An0)
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(3) Caleulate time histories of ﬁ " rad, ﬁ * Atdt, end

¢
J; Aédt by using the integrating matrix ||C]| and the time

histories of Aa, A%, and Aé.

(4) Compute Cp,, Cnj, and Cn, by least squares from the
relation

¢ ¢ ¢ I
O, fo A di-+ Cng fo AL di-+ C, fo Mdi—=d (29

or

Cn
E mg P 0{}
[ u{o } ray

ms

(6) Determine (', from C,; by using equation (23) and
then determine Cy; and Cy, by using equations (16) and (17).

(6) Calculate the time history of the intermediate quan-
tity Ay by inserting these values of (7, and Cf; into equa-
tion (18).

(7) Compute the values of (;, and Cf, from equation (19).

o0,
(8) The derivatives <%i£> and —aa—L‘- are then deter-
¢

mined from equations (20) and (22) and the previously
derived quantities.

METHOD C

Method C is an extension of the method presented in
reference 4. Appendix C contains the development of the
pertinent equations upon which method C is based. Two
basic measurements are used in this analysis, one of which
must be incremental elevator deflection and the other one
may be chosen from incremental load factor, pitching ve-
locity, angle of attack, and so forth. In this report incre-
mental pitching velocity is used.

Two supplementel assumptions are made. The first is
the relation between O, and Cn; given in equation (23) and
the second is

Cmy=2 Ot (26)

The procedure for method C is as follows:

(1) Compute the stability coefficients K;, K;, K;, and K,
as outlined in step (4) of method A.

(2) Compute Oy, from the relation

Cp = —%— -4—‘—02 27)
where -
' m
d o=" [x & ] (28)
an
A Kﬁ Kg ﬂ:;Vm
0,_(1+>\>( ;’) (K, K ) (29)

(3) Determine C,, by using the expression

I gS I
Oﬂa— gS-E KQ""

74

mV sVmaFm b TeTmany

(30)
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(4) Caleulate Cp; from

_ I mV ;
O“é_EVm(l—i-x) <0L= qS Kl) (31)
(6) Compute Um; from
I mV
K,

_aS¢ ¢Se
=15 o (32)

¢ 2,

(6) Determine C, and Oy, from equations (23) and (26)
by using the values of Om; and Cw, found in steps (4) and (5),
respectively. Approximate equations for the stability deriv-
atives are given in appendix C.

In appendix D, method C is modified slightly so that
many of the stability derivatives can be obtained from a
gingle time history. This time history must be the response
to an input elevator motion of the impulse type. This
modified method C comes closest to the ultimate aim of
this type of analysis, namely to determine the derivatives
from a single time history.

One of the important factors in obtaining reliable results
with the methods outlined herein is the choice of a sufficiently
small time interval Af. In the computations using method
C in this report, in one case a time interval of Af=0.1
second was found to be too large to give reliable results, and
a time interval of At=0.05 second had to be used.

EXAMPLES -

In order to illustrate the methods outlined in the previous
section as well as to compare the results obtained, a number
of examples are given in which the data used are from test
runs of a medium jet bomber at about the same Mach
number. Methods A and C are applied to flights 1 and 2;
whereas all three flights are analyzed by method B. Com-
putations are shown in the tables for flight 1, but for the
other flights only the results are given.

Table I contains the integrating matrix ||C]| based on
Simpson’s law (ref. 3) which is used in all three methods.

The airplane characteristics and flight conditions are
shown in table IT (a) for all three flights. Although the
geometric parameters are the same, the parameters such as
weight, speed, Mach number, center-of-gravity position,
and altitude vary slightly between the three runs.

In table II (b) the coefficients of the transfer function
which relates pitching velocity to elevator deflection de-
fined by equation (8) and computed by the method out-
lined in reference 4 are shown. These preliminary constants
are required in methods A and C and the actual computa-
tions are shown in a subsequent table.

Time histories of measured and derived quantities for
flight 1 are shown in table ITI. The quantities in columns
®, ®, @, and () are measured and the other five quantities
are derived from the measured quantities. In these tables
more decimal places are carried in the measured quantities
than are warranted by instrument accuracy in order to as-
sure no loss in accuracy in rounding off. The measurements
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of incremental tail load AL, were available only for the times
listed, and, since these covered approximately the natural
period of the short-period oscillations of the aircraft, the

TABLE II.—AIRPLANE CHARACTERISTICS, FLIGHT CON-
DITIONS, AND TRANSFER-FUNCTION,K COEFFICIENTS

(a) Alrplane characteristics and flight conditions

Flight 1 | Flight 2 I Flight 3
b, It 89 89
¢, ft. 14.016 14.018 14. 016
denter-of-gmvity position, percent ALLA.C, ... 27.34 27.32 27.
V, 1/sce _---] 0.081923 | 0.06285¢ | 0.062638
) slag-ft. - 255, 885 256,276 258, 957
ko, (i3 141.61 141. 61 14161
Mach number. Q. 497 0.494 0. 496
m, slugs. 1800.83 1802, 67 1828. 66
g b/ttt 171 168 171
, (L2 1,175 1,176 1,175
8y, 12, 289.3 289.3 289.3
¥V, ft/seo 520 512 514
w1 58,180 58, 050 880
WigS. 0. 280561 Q. 207585 0
I, ft —33.5 =335 —33.5
e 0.87 0.87 0.87
p, slugs/fts, 0. 001267 0. 001278 0. 001281
(b) Coefliclents of airplane transfer function
Flight 1 Flight 2
Probable Probable
Coeflicient error Coefliclent error
K 4.14 0.14 4.19 018
K 9. 547 0.73 10.329 Q.70
K —9.767 0.35 —10.010 0.42
K —14.624 1.4 —15. 828 1.8
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data were considered sufficient. More of the time bistorie
of the other variables were available and were used.

Method A.—The principal computations illustrating
method A are presented in table IV; some of the intermed-
iate steps outlined in method A are simple computations and
are therefore not included in this table. Table IV (a) is
obtained by applying equation (7) to the data given in table
IT and illustrates step (3) of method A.

In table IV (b), the computations illustrating the deter-
mination of Cn; and Cn,-by steps (7) and (8) of method A
are shown. Two of the columns are taken from table III
and the equations upon which the computations are based
are (12) and (13).

Table IV (c) illustrates the computation of (', and Cn,
by step (10) of method A. Two of the columns are ob-
tained by operating on columns () and @) of table III with
the integrating matrix ||C]| given in table I, and the other
column is taken directly from table III. The computation
is based on equation (15).

The refined values of C;, and Cy, are determined in table
IV (d) by step (13). Two of the columns are taken directly
from table ITT and the other column is derived by use of
equation (18).

Final results obtained with method A for the data of
flights 1 and 2 after three iterations are shown in tablo
IV (e).

TABLE III.—TIME HISTORIES OF MEASURED AND DERIVED QUANTITIES FOR FLIGHT 1

Measured | Derived
® ® ® ® ® ® ® ® ® ®
*
t AL, An 8 Ap
0 0 0 0 0 0 0 (1] 0
.1 . 009703 660 0 0 0 . 000741
.2 . 055812 8773 . 03702 —. 018808 —. 000922 —. 030886 010591 . 004029 ~. 001086
.3 . 072880 3488 —. 12008 —. 074064 —. 005176 —. 107378 . 068067 ~. 003122 —. 007857
.4 . 074623 1644 —. 35393 --. 125305 —. 013921 —. 177000 . 183905 ~—. 022667 —. 014935
.5 071414 25 —. 62568 —. 149419 —. 024871 —. 204757 . 328380 ~. 046165 -
N . 070638 —1423 —. 02272 —. 165781 —. 035032 —. 220103 . 474022 ~—. 070303 —. 025122
7 . 067923 —2520 ~L1 1692 —. 167504 —. (46216 —. 215056 . 610391 ~—. 092683 -
.8 . 063691 —3459 —1. 40938 —. 163628 —. 054782 —. 201806 LT24184 ~. 112607 . 031748
.9 . 067923 —3062 —1. 56736 —. 155447 —. 061513 —. 184643 . 819714 ~. 127257 -
Lo 084712 —4518 —L 74432 —. 142060 ~—. 0661768 —. 160433 . 875829 ~. 138772 -~. 035700
11 L0436 —6321 —1. 85808 —. 127027 —. 068518 —. 133012 . 908173 ~. 148035 -
12 032077 —6274 —L 75084 —. 090426 —. 063301 —. 081438 . 902885 ~. 147534 ~. 034081
L3 —. 012565 —857 —1. 75064 —. 053810 . 064585 —. 028512 . 856022 ~—, 145166 ~-. 032478
L4 —. 022862 —a778 —1. 45360 . 014840 —. 056328 . 066966 . 744688 —. 125720 -~. 025852
L5 —. 026023 —~5079 —1.25763 . 058562 —. 044150 . 126783 . 586752 ~—. 100705 —~. 020274
L6 —. 47260 —4748 —. 88480 . 091287 . 030073 . 164326 . 400397 ~. 072582 —~. 014092
L7 —. 075428 —. 48186 . 133055 —. 014737 . 213867 . 196931 ~. 039441 -, 008194
L8 —. 071623 —1968 —. 05058 . 167603 . 001884 . 252820 —. 022333 —. 005160 ~. 001334
L9 —. 078674 —316 . 28140 . 196353 . 019380 . 285725 —. 250374 . 031245 .
20 —. 032513 1018 . T2680 . 207549 . 038467 . 288821 —. 476562 . 067093 . 011195
21 —. 088063 2172 117553 . 214008 .051697 . 284618 —. 670353 . 100087 . 016361
2.2 —. 095707 L 46624 .ana . 066082 . 280136 —. 854802 . 127688 . 021140
23 —. 087504 5070 1.73168 . 217022 . 076395 .a71918 —1. 010046 . 156658 . 025642
2.4 —. 030227 8801 2 07296 . 188880 . 085314 . 216138 —1.124562 . 183397 . 026734
25 —. 024956 1.83808 121859 . 038383 . 125260
2.6 —, 026422 178224 . 051241 . 085705 . (21681
2.7 —. 026703 1. 63424 . 006389 . 077804 —. 039955
28 —. 019651 L 46624 —. 039516 . 068452 —. 104671
2.9 —. 005864 1 22608 —. 072772, . 052350 —. 147119
3.0 . 000908 . 99858 —. 080953 . 037762 —. 152347
3.1 . 005620 75208 —. 088704 . 023848 —. 156342
32 . 007058 34760 —. 083537 . 0120686 —. 136084
3.3 . 010611 .20072 —. 085259 001887 —. 136800
3.4 . 000145 . 01264 —. 088806 . 006638 —. 103736
35 . 010173 —. 18060 —. 062487 —. 012538 —. 087786
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TABLE IV.—COMPUTATIONS ILLUSTRATING METHOD A

() First approximation of Cr, and Cr, by step (3) (¢) Determination of Cn_and Cm; by step (10)
A3 t ¢ . ¢ t
(Lnble (table I11, Lg An ¢ (tnble (table W an ¢ J; Ax dt Asdt As ¢ Ax dt A5 de Ar
umn®@)| column®)| ¢ umn@)| column @) ¢S 0 0 o
— 0 0 0 0 1.2 | —0.041237 | 0.067784 | —0.034881
0,1 8 0. o ]1:3 &8?% &3"’,%3,’2 =0 3;;.,3%‘1’ 110 . 000 0 13 | —.047010 | .088473 | —.032478
.2 | —.000922 | .055812 010980 [| 2.0 | .036467 | —. 082513 - 210453 2 | —000018 | .003164 | —. 001988 | 14 | —. 086415 [ —,025852
.3 | —.005175 | . —.034770 || 221 | .051607 | —.088063 . 340384 3 |- -009718 | —. 007857 || 1.5 | —. 050045 | .084L19 | —. 020974
4 | —o13021 | .o74625 | — 102481 || 22| Cossosz | —. oas707 124563 4 | —001282 | .o17219 | — 014036 || 1.6 | —.082767 | 050601 | —.014992
W6 | ~,024871 | 071414 | —. 181172 || 223 | .076885 | —. 087604 . 501427 5 | ~—.003183 | . 1] — 17 | —.065018 | .054201 [ —.008184
.6 |~ .070898 | — 24| .035314 | —.030227 . 600248 6 | —006200 | .031585 { —. 025122 |[ 1.8 | — 046682 | —. 001334
L7 | — 046218 | .067023 | —. 338554 || 2.5 | .038588 | —.024958 . 538027 7 | — 010314 | .038487 | —. 028778 || L9 | —. 004612 | .039040 . 005589
8 | —o54782 | 068801 | —. 408005 || 2.6 | 035705 | —. 028422 516067 8 | —.015370 | .045288 | —. 031746 || 20 | —. 081805 | .0S0954 . 011195
.0 | —081613 | .067923 | —. 453846 || 2.7 | .077804 | ~.026702 . 470318 9 | —.021209 | .052139 f —.034084 || 21 | — . 022443 . 016361
L0 —, 066178 L084712 | —. 505087 || 2.8 .060452 | —.010851 . L0 —. 037613 | .058791 | —. 035700 2.2 —. 051530 013272 . 021140
L1 —068513 L4346 | — 530027 Il 229 . 052350 —. 005864 . 11 —. 034367 | .064103 { —. 038500 23 —. 044418 . 003702 . 025542
L2 | — 088301 | .032077 | —. 508017 || 3.0 | .0377623 . 000903 . 280144 2.4 | —.036264 | —. 002503 . 026734
1.3 | — 084585 | —. 012585 [ —. 506917 || 3.1 023845 . 005620 L2773 -
1.4 —. 022862 | —. 32| 012086 . 007958 . 100851
tg ~, 044150 —.% —. 384175 %i . 001887 '8(1,3?2 . 084181 : ¢
L7 | —014737 | — 076428 | —. 133602 || 3.5 | — 012536 | .o010175 | —.054901 . o= C"aJ; A"‘"“"C--J; Asdt
[ 0.042803  —0.036635] [Chm, o
=7 —0.030635  0.045583 | YCu, [~ ]—0.018185
CLaAa-I-CL,M 28 An N
Ca =—0. 644
0.087761 —0. 053345 0. 606401
~0,053345  0.100964 CL. Cmy=—0.916
CL,=7.07
Cr,=0. 262
(d) Determination of the refined values of Cz_ and Ci; by step (13)
A3 Ax
(b) Determination of C; amd Cm;, by steps (7) and () ¢ | (tabloTm, | (tabtom, oy ¢t |(tablem, (table 1, Ay
column @5 column @') column ®)| col 3
t (mb‘igm (tab?g baig 3 (table (tabi‘: oI, 0 1 8 0 g lig &30% —0.071 —0.081511
. . 009703 .01 —. 07867 . 063290
column @) | column ©) umn @) | column @ 2 |~ .cossa1z | .onsour f| 20| Cessee7r | —os2si3 2101100
i - 805175 .gﬁ —. 027608 %é 051697 | —. 083063 . 321409
0. 1 8 °, 000741 t% OjMWW Iy }ﬂfg‘a 5 | — 07414 | — 167519 || 28 | 078885 | —. 087504 L483307
.2 . 010501 . 004929 1.4 . 7446886 —. 125720 6 —. 035032 .070688 | —. 252511 || 2.4 .085314 | —. (030297 . 585856
.3 7 —. 003122 15 586752 —. 100705 7 | —.048318 .007023 | —.324221 || 2.6 .088383 | —.024958 - 520096
A . 183905 —, 022667 1.8 . 400397 —. 072582 8 —. 054782 .068691 | - 28 085705 | —. 020422 514646
N —. 046165 L7 . 106831 —. 030441 9 | —. 061513 .067023 | —. 441549 || 2.7 077804 | —. 473008
.6 474922 —, 070383 1.8 —. 022338 —. 005166 L0 | —. 066178 004712 | —. 494407 || 2.8 .086462 | —.019851 . 481572
7 610301 —. 092083 Lo — . 250874 © 031245 L1 | — 068518 | .043246 | —. 520178 || 29 | .052350 | —. 003884 .384860
'8 724134 — 112697 20 —. 478502 ;067093 13 | —06%301 | .032077 | —. 501508 || 8.0 | .037782 . 000908 . 200324
9 812714 — 197257 21 — . 670353 : 100687 L3 | — —.012665'| —. 505173 || 3.1 | .023846 . 005620 228218
1.0 875829 — 138772 232 - :1a7888 L4 | —050328 | — 022862 | —. 425395 || 3.2 | 012066 . 007258 .109738
L1 208173 —. 148055 2.3 —1. 010045 .156858 L5 —. 044150 | —. 026028 | —. 372658 || 3.3 . 001887 010611 093319
2.4 —1.124562 183397 Le | — —. 047260 | —. 267181 || 3.4 | —. 006638 . 009145 010552
L7 | —014787 | — 075428 | —. 147869 || 3.5 | —. 012538 .010176 —. (40055
Cmj {Api) = {Ap:) A=, Act-Ci, 83
9, 034204 Cj = — L. 578835 ‘ o | o, Cu, .
Cmj=—0.1589 —0.053845  0.100964_| |Cr,[ — |—0.331104
C'.&"=-K|o—0-; Cr,=7.09
Cm=—0.0803 Cry =0.469

(e) Final results using method A after three iterations

Flight Probarble Flight 2
1 error for
flight 1
0. 113 6.70
0.105 0. 446
0. 0004 0.076
0. 0004 0.033
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Method B.—The principal computations illustrating
method B are presented in table V. Again, some of the
intermediate steps outlined in method B are simple com-
putations and are therefore omitted. In table V(a) the com-
putation demonstrating the determination of Cn,, Cn;, 2nd
O, by step (4) by using the relation (25) is shown. Three
of the columns are obtained by operating on columns ®), (@,
and @ of table IIL with the integrating matrix [|C]| given
in table 1.

Table V (b) illustrates step (7), the determination of G,
and Oy, using equation (19). Two of the columns are ob-
tained directly from teble ITII and the other column is
derived by using equation (18).

In table V (c) final results obtained with method B for
three sets of flight data are shown.

Method C.—The principal computations of method C are
presented in table VI. Table VI (a) shows the computa-
tion of Kj, K,, K;, and K, from flight 1 data by the method
of reference 4. The integrals in table VI (a) were computed
by reading the film at 0.05-second intervals and using the
integrating matrix for Af==0.05 second; this interval was
necessary in order to obtain reasonable results for the
method. Use of the time interval At=0.1 second did not
produce sufficiently accurate values of K; and K, in this
case. Table VI (b) shows the computation of the K values
for flight 2 data. In this case a time interval of At=0.1
second was sufficiently small to produce reliable results for
method C. .

In table VI (c¢) the final results obtained with method C
for flight 1 and flight 2 data are given along with the results
obtained by using the approximate formulas of appendix C.

DISCUSSION

The three methods presented in this report are based on the
assumptions that the aircraft has two degrees of freedom
(vertical motion and pitch), that the motion of the aircraft
can be adequately described by the linear differential equa-
tions of motion with constant coefficients based on small-
perturbation theory, that the aircraft is a rigid body witb no
flexibility, and that the major contribution to the damping
comes from the horizontal tail. The airplane, its flight con-
dition, and the maneuver to be analyzed must therefore fall
within the realm of these assumptions; that is, the airplane
should be operating under conditions in the linear range of the
coefficients, the maneuver should be of the pull-up or push-
down variety where little loss in airspeed occurs during the
maneuver and where displacement angles are small, and the
maneuver should start from a level-flight trim condition and
should be in the Mach number range in which these assump-
tions are valid.
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Since the choice of the method to be used depends primarily
on the number of measurements which are available, method
A is recommended when four basic measurements are avail-
able, method B when three measurements are available, and
so forth. If, however, an accurate value of A is known in
advance, then method B is recommended since it will give
the most information for the least amount of work. Method
C requires more work than method B, and the modified
method Cisnot expected to be soreliable as the other methods.

In these methods sufficient date to cover the natural period
of the short-period oscillations of the aircraft should be used.
For highly damped motions sufficient data should be used to
approach the steady-state value.

The accuracy of the results obtained from these methods is
influenced considerably by errors in the instruments and in
the record reading. Instruments used should be accurate,
calibrated both statically and dynamically, and free from
drift and hysteresis. Before an analysis is started the data
should be corrected for known instrument errors; the records
should then be read as carefully as possible. Measured tail-
load date should be corrected for effects of inertia. The
accuracy of the analysis next depends on the time interval
selected for the integrating matrix and on the amount of
departure from the basic assumptions. Provided the initial
data are accurate, the smaller the time interval the more
accurate the results. If at all possible, therefore, time inter-
vals of At=0.05 second or At=0.025 second should be used
for an accurate analysis. With the introduction of oscillo-
graph timers, which record timing marks every 0.01 second,
and the use of IBM facilities to process the data, such timing
intervals are feagible. The differences between the values
shown for different flights in tables IV (e), V (c), and VI (c)
are believed to represent the scatter caused by effects of
flexibility, minor nonlinearities, instrument errors, record-
reading errors, changes in airspeed during the maneuvers, and
other items which essentially depart from the basic assump-
tions.

As may be seen from a comparison of tables IV (a) and
IV (d), the inclusion of the Cz; and (i, terms in the force
equation for method A has little or no effect on Cy, but has a
considerable effect on Oy, If the Up, and (y; terms are
retained in the force equation in the development of equation
(8), the form of the equation remains the same but the K
values now include Oy, and Op; terms. These terms were
found to have & negligible eﬁect on the K values and their
inclusion made the equations too unwieldy to handle. For
the sake of completeness, the K values including the Oy; and

C;, terms are given in appendix E as K, E, E, E, Eg,
and K.
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TABLE V.—COMPUTATIONS ILLUSTRATING METHOD B
(@) Determination of Cm_, Caj, and Cmy

t J'tAadl J"Mdt f‘udz I; y dt ftA-Edt fthJ I
= ¢ Ax .
0 0 0 L 0 0 0 95¢
0 0 0 0 0 L8| —0.085668 | —0.104508 0.0465832 0.015219
.1 0 0 . 000182 19 —. 084612 —. 077530 . 030040 or
.2 —. 000018 —. 001164 . 003154 —. 001800 2.0 —. 061805 —. 048742 . 030954
.3 - —. 007697 00071/ - 21 — —. 020009 . 023443 019444
4 —. 001232 —. 022265 .017219 —. 011386 2.3 —. 051530 . 008260 .013272 019718
.5 —. 003153 —. 041702 . 024501 —. 013576 2.3 —. 044418 . 035593 . 003703 019718
.8 - —. 063115 - 031585 —. 015062 2.4 —. 036264 . 060589 —. 002593 016979
7 —. 010314 — . 038487 —. 015319 25 —. 027, . 077851 —. 005296 011072
.8 —. 015379 —. 105018 . 045288 —. 014867 2.6 ~. 018770 . 084940 —. 007809
.9 —. 021209 —. 125274 . 052139 —. 014123 a7 —. 010553 .083885 —. 010526 000826
1.0 —. 027613 —. 142554 . 058701 —. 012989 28 —. 003317 . 076269 —. 012905 —. 003590
L1 - —. 157258 . 064103 —. 011541 2.9 . . 063483 —. 014122 —. 006612
12 - ~. 168003 . —. 008218 3.0 - 007148 048510 —. 014312 —. 007355
L3 ~. 047010 —.173420 . 063473 - a1 .010221 —. 013986 —. 008059
1.4 - —.171125 . 066415 . 001330 3.2 . 012008 018620 —. 013267 —. 007590
1.5 —. 059046 —.161157 . 064119 . 238 . 012687 005148 —. 012304 —. 007748
1.8 —. 082767 —. 146702 - 060601 . 0083204 3.4 . 012428 —. 006739 —. 011282 —. 000280
L7 —. 065018 —. 137802 . 054201 - 012089 35 L 011447 —. 016172 —. 010204 ~—. 000369
I - t 1 i
ZG0=Cm, | A dt+C-;J; A dt+0.,f0 AS dt
0.0448788  0.0743828 —0. Chm,, —0.0072009
0.0743828  0.2950167 —0.1121520 | { Cm; $md  0.0050556
—~0.037042 —0.1121520  0.0471085_| ( Cm; ~—0. 0006984
Can=—0.624
Cuy=—0.149
Cluy =—0. 881
(b) Determination of Cr, and Crg () Final results from thres sats of flight data using method B with A=0.5
(tabAla 101, (tnb/l”m AY ¢ (mtﬁa 1, (t:ah‘lM AY Flight 1 Pmba}) ° Flight 3 | Flight3
(] (] (:] {:] error Ior
column ®)|column ®') column ®)| column @), flight 1
01 0 g 1.3 ag%% —o.omzs; —0.030434 0.113 6.68 6.78
. . L . —. 07867 . 064602 .
‘2 toss812 | 012000 || 20| o3si67 | —. 082813 ‘192411 0.105 &m g";g
.3 | —.005175 | .0728%0 | —. 028068 || 21| .051697 | —.088063 . 322604 0.008 057 .
‘8 | Tiobiat | O7its | Tiiesiat || A3 | Orases | gereor |  -doadar wo | Som o) Do
6 1070698 | —. 283436 || 24 | 08314 | — o022y | 535746 &oza -g.-sro _g"g
.7 | —.ou216 | Lo067028 | ~ 325120 || 2.5 .088883 | —. 034956 . 530203 019 —0.135 -
.8 054 068601 | —. 805488 || 26 | .085705 | —. 0268422 514713 0.010 —0.068 —0.063
0 | —061613 | .067023 | — 442312 || 27| .o77804 | —. 028702 472812 0,063 —0.818 —0.802
1.0 | — 068176 | .084712 | —. 405005 || 2.8 | .088462 | —.018651 L 431104 papin bt
L1 | —o068518 | .o432468 | —. 520718 || 2.9 052350 | —. 005884 364215
1.2 | —.068301 | .032077 | ~. 501830 || 8.0 037762 ~000908 . 187 1.96
13 —.012685 | —. 505261 || 8.1 | 023848 . 005620 . 277530
L4 —~. 022862 | — 425000 || 8.2 | .012068 . 007958 109150
L5 | —. 044150 | —, 026023 | —. 872005 || 8.3 001887 . 010611
1.6 —.047260 | —. 206460 {| 8.4 | —. 006638 . 009145 010140
1.7 | —.014737 | —. 075428 | —. 146052 || 3.5 | —. 012538 010175 -
Aym Cr AatCr;A3
0.087761  —0.053345 ( Cr, 0. 588132
—0, 053345 0.100084 |} cr, [ = | ~0.332334
Cr,=17.09
Cr;=0.456
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TABLE VI—COMPUTATIONS ILLUSTRATING METHOD C
(a) Determination of Ki, K3, K, and K from flight 1 data

t t t T t - t

t A9 f Af dt —f A5 dt —f A5 dr dt —ad ¢ A9 A9 di —| asdi

0 0 0.Jo . 0 0
0 0 0 - 0 0 L2 —0. 133601 —0. 062688 —0. 06933

.1 0 0 . —.00016 0 L3 —.1 —. 076444 -

.2 —. 000675 —. 000017 - —. 00018 . 018808 14 —. 142456 —. 090671 —. 06946

.3 —. 005124 —. 000262 - —. . 074064 15 —. 138768 —. 104769 —. 06728

4 —. 015308 —. 001241 —. 01734 —.00217 125305 16 —. 131333 —. 118301 —. 06338

.5 —. 029159 - —. U473 - . 1404190 17 —.120101 - —. 05718

.6 —. 044 —. 007137 - - .165781 L8 —.1 —. 142170 —. 04975

7 —. 061712 —. 012459 - —. 01068 . 167505 1.9 - —. 151759 —

.8 —. 078140 —. 019485 —. 04624 —. 01495 .163828 2.0 - —. 150437 -

.9 —. 094122 —. 025035 —. 05317 —.01992 . 155447 2.1 - —. 165066 —. 02518
L0 —. 100042 —. 038253 - — . 142060 22 - —. 168577 —. 01588
L1 —.122585 —. (9848 —. —. 03188 127027 2.3 - —. 169910 —. 00649

2.4 . 018650 —. 169068 —. 00128

t 12 i
K1M+K2J'o A9 dt— Ky o Mdt—KoJ;J; A3 drdt=—n08

0.183701353  0.141082469  0.09447005¢  0.08 K —0. 004034232
0.141082469  0.247220311  0.073030601  0.136208337 | ) Ka( _ ) 0.220668158
0.094470050  0.073039691  0.049289973  0.042731028 | ) Ks —0. 008849134
0.031352276  0.138293337  0.042731928  0.075308217_1 \ K 0. 119723023

Ki=414

K3=0.55

Ki=—0.77

Ky=—14.62

(b) Determination of Ki, K3, K3, and Ks from flight 2 data

t ¢ tfr . ¢ t
t AS agdt — | Asat —-ff A3 dr dt —A8 ¢ Ad Addt — | asdt
0 0 0Jo 1] 0
0 0 0 ’ 0 .0 0 1s | —o48557 | —o.081124 —0.075188
.1 0 0 . 000094 . 000025 0 L4 —. 146021 —. 095859 —. 070181
.2 - —. 000008 —. 002278 - . 013779 L5 —. 138050 —. 110267 —. 062638
.3 - —. 000200 —. 008715 —. . 1.6 —. 122660 —. 123344 —. 054155
4 —. 013778 —. 001049 —. 016786 —. 001861 .128168 L7 —. 102208 —. 134634 —. 045741
.5 —. 025391 —. 003117 - - . 161906 18 —.0TN073 —. 143710 —. 037416
.6 —. 045744 - - —. 006874 . L9 —. 054902 —. 150417 —. 028839
.7 —. 064561 —. 012315 - —. 010622 . 191186 2.0 —. 031272 —. 164720 -
.8 —. 083762 —. 019738 —. 040313 —. 015187 . 190325 2.1 —. 008268 —. 156693 —. 010793
.9 —. 102124 - —. 056182 - 174393 2.2 . 014414 —. 158370 —. 001208
LO —. 118568 —. 040094 - —. 026417 . 153204 2.3 . 036352 —. 153867 . 006202
L1 —. 132553 —. 052670 —. 071755 - . 125303 24 . 032385 —. 149447 .012185
L2 —. 143128 —. 066497 - —. 040647 . 083106 25 . 065480 —. 143521 . 018877
i t t(r
Kia0+-K | A9dl—Ks| A3 dl—K.J' f AS dr dt=—Ad .
0 0 0Jo
0.18385708 0.08810197 0.09180851 0. Ky —0.02525320
0.08819197 0.25436118 0.05685420 0.14095293 Ky - 0.28335143
0.09180851 0.05665420 0.04725486 0.03311576 K3 —0.01717559
0.05739522  0.14085293  0.03311676  0.07828310 (K 0.14957619
Ki=4.19
K:=10.33
Kym=—10.01
Ky=—1553 .
(¢) Final results using method O with A=0.5
Flight 1 Flight 2
Accurate | Approximate Probable Accurate | Approximate
values values error values values
Cr, 7.21 7.00 0.106 7.59 7.34
[0/ 0.374 0.371 0.018 0,394 0.391
Cr; 0. 0668 0. 067 0. 003 0.067 0.069
Cr,, 0.033 0.034 0. 003 0.034 0.034
Chu, —0. 624 —0.637 0.073 —0.708 =0.710
C-; —0.158 —0.160 0.012 —0.161 —0.164
Cu;, —0.079 —0.080 0. 006 —0.081 —0.082
Cay —0.804 —0.887 0.032 —0.041 —0.935
[GL 0/ 0 4.48 4.54 4.49 4.58
dCL P8, L7 L73 1.84 183
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In the actual computation it is recommeunded that the
simultaneous equations formed by the least-squares procedure
be solved directly by the elimination of the varisbles or by
Crout’s method. (See ref. 6.) The use of a least-squares
method permits the calculation of a probable error, which is
an indication of the fit of the data. The expression used in
computing the probable error is

P.E.=O.67451/%«,@:

where By; is the main diagonal term of the inverted matrix
of the coeflicients, X is the difference between the computed
and measured value of the variable, NV is the number of cases
considered in the least-squares procedure, and « is the num-
ber of unknowns determined by the least-squares procedure.
A probable-error analysis was made of all the results using
flight 1 data and these results are given in tables IT (b),
IV (e), V (c), and VI (¢). This probable-error analysis
indicates that all the derivatives determined by method A
with the exception of U7, appear to be more accurate than
the derivatives determined by method B or C; it also
indicates that the derivatives determined by methods B and
C appear to be of the same order of accuracy.

When the computed stability derivatives are substituted
back into the equations of motion, the method that uses the
most measurements and has the fewest restraints imposed
on it would be expected to produce the most accurate results
and give the best fit to the original data. This might not
be the case, as illustrated in figure 2 which compares the fit
of the measured data with the computed data for the three
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methods presented. The results for method A are more
accurate for the data herein than the results for method C,
but the fit of the incremental-pitching-velocity curve for
method C is as good s, if not better than, the fit for method
A or method B. Tt appears in general that the more coeffi-
cients determined from a single time history the better will
be the fit of the data but the less accurate will be the coeffi-
cients determined. The fit of the data is interesting since -
the three methods presented are essentially curve-fitting
processes in which the longitudinel equations of motion are
used to fit the flight data. A good fit indicates that the
equations of motion and assumptions used adequately fit the
data and the coefficients determined, if inserted in the
equations of motion, will reproduce the motions of the air-
craft.

In figure 2 the incremental tail load shown for method B
wag computed by using the stability derivatives determined
from the time histories of incremental load factor and
pitching velocity. In method C the incremental load factor
and tail load presented were computed by using the deriva-
tives determined from the pitching velocity. These time
histories indicate how well the derivatives determined on
the basis of the measurements recorded by one set of instru-
ments will predict the measurements recorded by & different
set of instruments. In the case of method C the agreement
is good; in the case of method B it appears that a more
realistic value of A than 0.5 should be used. Method B is
more sensitive to A than method C is.

Although not presented, the derivatives determined ﬁom
flight 2 by methods A and C were used to predict the motions
of the aircraft for flight 1. A comparison was then made

5 §2 L Met'hod‘ A L Meltho& B L - Method C
2 888 o N\ / - / N
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gl—— Flight data
- : —— —— Computed
P L
° 2-: 134 1 e — e
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Fiaurr 2.—DMeasured and computed flight 1 time histories of incremental elevator displacement, pitching velocity, load factor,

and tail load showing the fit of the dPta-.
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with the actual flight 1 motions and it was found that the
predicted motions and the actual motions were in good
agreement. These results verify the validity of the method
outlined herein as applied to the example airplane.

A possibility for & further generalized method which would
include damping effects of wing and fuselage and therefore
would make the method applicable to the case of swept-wing
airplanes may be realized by combining features of method C
with method A in the following manner. Equation (A20)
may be written in the form

Vv vV Ay 2 Ty
On (=3, med 4 One {7, Aok o} = {55 A= Cupta]

Now C'.,é‘ and C,, may be evaluated by a least-squares
procedure, provided an accurate value of (i, is available or
can be determined. Examiration of the probable errors for
Cy, given in tables IV (e) and VI (c) indicate that, in the
case of the medium jet bomber used in the calculations
herein, the more accurate value of (i, is determined by
method C by using equations (C12) and (C4). Itis believed
this will generally be the case for the derivative Cp,. It
might also be noted that this value of Cy; will provide more
rapid convergence of the iterative procedure of method A.
The usual assumption is made that the contribution of
wing and fuselage to O, is negligible. Then C.; can be
computed through the use of the value of C,,, computed by
the above procedure and equation (A22).

Possibilities for further investigation are to expand the
method to include flexibility effects and the effects of higher-
order derivatives and to extend the method to the case
where the initial conditions are known but are not neces-
sarily zero; that is, the maneuvers do not start from level-
flight frim conditions. The methods could also be extended
to other configurations such as canard sircraft and tailless
aireraft, and perbaps & similaer analysis could be made of
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the lateral motion of an aircraft to determine the lateral

derivatives.
CONCLUDING REMARKS

An analysis of longitudinal-stability derivatives by three
separate methods has been presented and applied to flight
data. Method A, the most general method, requires four
mesasurements in time-history form and permits computation
of all the longitudinal-stability derivatives; it also requires
the most computing time and gives the most accurate
answers. Method B, which requires three measurements in
time-history form and one supplemental assumption, namely
Cn,
Cn;
moment derivatives), gives the most information for the
least amount of work and gives results which are in good
agreement with those of method A. Method C requires
two measurements in time-history form and two sup-

=Constant (where On., and O are the pitching-

On
namely 0 ':"= Constant and
mg

plementary assumptions,

0’,,“,=%C’L3 (where Cn, and Oy, are the elevator-effectiveness

derivatives, %, is the tail length, and ¢ is the mean aero-
dynamic choxd).

The results obtained for the methods presented depend in
a large measure on accurate instrument measurements and
require considerable computation to yield adequate engi-
neering answers. Since, however, the present trend is toward
increased instrument accuracy and expanded facilities for
machine computation, this directon appears to be the one
in which flight-date analysis should proceed.

LANGLEY ABRONAUTICAL LLABORATORY,
NaTionar Apvisory COMMITTEE FOR AERONAUTICS,
Lancuey Fienp, Va., August 15, 1968,



APPENDIX A

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY USING FOUR MEASUREMENTS
IN TIME-HISTORY FORM

EQUATIONS OF MOTION

The equations of motbion for small vertical-plane dis
turbances may be stated (see fig. 1 for definition) as

W ., . [oC 2C : oC
? Vy= "SZL)WB qSAa—I-(—af)‘ ﬂthtAat'f"_b% ﬂthtA5
(A1)

I§’=(9%>WB QSEA(X‘I_('DD%L‘)’ ﬂgQS;x; Aa;-l—
oC,, o0,
as ﬂ;QS;G;A6+ mgS,x, Ad (A2)
where
_ a2 Oe¢ ,

Aag=Aa (1 3a) ¢V o0 —6 = 7 _"/__ (A3)

These equations are for a rigid body and are based on the
usual assumptions of linearity, small angles, and no loss in
airspeed during the maneuver. It should be noted that the
variables are all in incremental form measured from a steady-
flight trim condition.

Substituting equation (A3) into equation (A1) results in

el (o (]

o0
< ;' 7:qS A8 (A4)
Since )
v
AM=—« A5
n=-7 (A5)
equation (A4) can be expressed as
%Aﬂ=CLaAa+OL&d+CLéé+OL‘,A6 (AG)
where
oC bO S o]
Cr =( L) >=) 1 1—32 (A72)
. _ GL S; Ty D¢
Cra==— 67),"' S Vda (A75)
— (%0, Siz 1
Ou=—3a )" SV Ii (A7)

oC S
Cry=—g5t 1 g (A7d)
Substituting equation (A3) into equation (A2) gives
I r Om bGL S; ) Q¢ . Lt O¢
ﬁo—(bb'—a— WBAC!-I'(—— I:Aa(l avsa——
aa"t Sl Ct 20 L, Sz,
or
I.é - 0,, ’ 0 S, 931
e (5), H(52) s 2 (s I+
. bOL S; 2:,’ Qe S; x;’ 1
“[“ da )BTV ]H[ (b RIFF il A
. CYL‘ St T, bG St C;
20 (P 0 52y O, ST (A%
which can be expressed as
I
qS_——C’,, Aa+Cp a4 Cu 9+C.,5A5 (A10)
where .
_ 00, [o185% S; z, Qe
O, aa) + ‘a?),”‘ﬁ 4 (1~ (Alla)
. OL S; ﬂ:ga aé
0n=~(3a ). 5 5V %a (A11b)
_ GL S; $;2 1
Oﬂé—— _b—a— "‘?Wﬁ (A].IC)'
o0, § oCs, 8
Om=p g Bt n P Aua

From an examination of equations (Al1) and (A7), the
following relations are seen to exist:

On, =2 O, (A12n).
COmi=2 Oy (Al2b)

Oe
On&= ‘\/;; a 0:19‘ (A]. 2c)

Equations (A6) and (A10) are linearly dependent in the
809



310

present form and must be suitably altered to be put into a
computational form. As is well-known, C;; and (., are
small, and initially for computational purposes the force
equation can be expressed as

W An=Cy Aot Cp s (A13)

qS
The derivatives Cp; and Cy, can be determined by means of
equations (A12b) and (A12a), respectively, after Cn; and
O, are determined.
Equations (A13) and (A10) are now in tbe identical form
of the equations of motion developed in reference 7. From
figure 1 the following relation is seen to exist:

Ab=Aa-+Ay (A14)

As demonstrated in reference 4, equations (A10), (A13),
and (A14) may be solved simultaneously to obtain the rela-
tion

5+K19+K,Aa=ms+mf “As dt (A15)
0
which may be expresseed in integral form as

. 0+K1A0+Kgf; A8 dt=K,f; A dt—l—KJ;f; Asdr dt

where
o SI:___ (et 0.,,;)] (A16a)
- g8 Cr, 48
2=—q—3(c’ma+c’na 7LnV ) (A16b)
S5 s
o (0,,,, ;VOLBG,,&) (A16¢)
E=2C 05 (0, 0n—C0n)  (AL6d)

By using the matrix method of reference 4, K, K;, Kj,
and K, may be evaluated from the time-history measure-
ments of pitching velocity and elevator angle.

METHOD OF SEPARATING Cm-i AND Cm&

This method of separating Cr; and C,, applies only to
conventional aircraft configurations equipped with a hori-
zontal tail surface located to the rear of the wing so that the
major contribution to damping in pitch is due to the hori-
zontal tail.

In order to separate Cn; and Cn,, the tail-load equation is
developed into & form suitable for computing C'; separately
in the following manner:

The incremental tail load is given by

20 o0
AL;=<—Sa—L>l 7:9S; Aat"l‘—a% 7:5:q AS (A17)
Substituting equation (A3) into equation (A17) gives
o(L E) . 2,0 1
s2(32) s o (-3 2 o ]
2C
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or
AL,_(205) ,, 5 (1 20) _<@ Sz e,
s S da) °F "8 Vo
[]4% Sl Ty L /] baz,‘ Sl
which can be expressed as
AL A% c . y
o R A On) | Bat L (Ot Oni) 4Gy
(A20)
From equation (Al14) it can be seen that
Cr 36+ Omgb=(Cmy+ Cums) & Cngy (A21)
but from equation (A164)
I I
Om&+ Omg=m C'La'—m K1=K10 (A22)
Therefore,
Cm&c'z—l- Omé9=K10('1+ Omé‘)" (A23)

Substituting equations (A22) and (A23) into equation (A20)
gives

[ O (s Omi— Kot On) | Bt

.:C—t (Broét Cmgv) + Oy AS (A24)
which can be expressed as
Aq‘LLS,t c—tfleoAa—— K]ga— 0[,5 Ad
=Cny [-x— ‘Y—F Y (Jmi+1) Aa:] (A25)
or
=Chn;Ae (A26)
where
A Agg ‘;I: Klo Aa—— Kma— OLS A6 (A27)
and
¢ . ¢V ¢ Vv
do=p i=57 Cart1) sa= | & an— (fri+1) se |
(A28)

From equations (A14) and (A5) the following relations are
self-evident:

-
a=~0 VA'n

—n—L (" 0
Ba=00—% fo Andt (A29)

The relations needed to determine the longitudinal-stability
derivatives from the flight measurements have now been
developed from the equations of motion; it remains to express
the pertinent relations in matrix notation.

MATRIX FORM OF THE EQUATIONS

A powerful tool for data analysis is provided by matrix
methods since tabulated time histories may be conveniently
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carried in the equations of motion. In the matrix solutions
using data, it is well known that numerical differentiation is
inherently more inaccurate than the corresponding integra-
tion process. For this reason, whenever necessary, the
differential equations are expressed in integral form. The
first step in matrix solutions is to tabulate the recorded
values of the basic variables at a number of points ?, t, %,
t, . . . along a given time history asin table ITI, the interval
of time used in most of the computations in the report being
At=0.1 second. These tabulations then become the various
column matrices Ad;, AL,, An;, and 6;. In certain cases

smaller time intervals must be used to get reliable results.
Another means of getting more accuracy is to use integrating
matrices based on cubic or quartic curves faired through the
data in place of the parabolic curves.

The four basic measurements used in the development
herein are incremental load factor, pitching velocity, tail
load, and elevator angle. By use of equation (A29), the
time history of incremental angle of attack is computed.
Equation (A13) may be expressed as

Aay Adg ‘ " Anp
AC![ A51 l Anl
Aag Aag ‘ CLa) W Ang
. ) {CLJ:ng 1. (A30)
Aay A,  An, |
or
C w
1BIl { e} =g 1am) (A31)

Applying least squares, which in matrix notation involves
premultiplication of matrix B by its transpose B’, to equation
(A31) yields

G W, o
[B’B] { o } =5 (Ban) (A32)
for which the solution is
CeY o w .,
{0§:}=[BB]-IQ—S{B An) (A33)

By the method of reference 4, compute K, K;, K;, and K
from the time histories of the pitching velocity and elevator
angle. The value of K, can be obtained from equation
(A22). Time histories of the derived Ap and A¢ functions
can now be computed by using equations (A27) and (A28)
since the value of (7, has been computed from equation (A33).

Equation (A26) becomes

{Ani}=Cns {Be1} (A34)
Applying least squares to equation (A34) results in
¢
; (AIJ-t AS"!)
Crj=—— (A35)
; (A¢f)2

3685606—b6——21

From equation (A22) Cn, is obtained as

Om&=Km— 0,,,9' (A36)
Equation (A10) is now expressed in integral form as
I t t
?S_Ea_ 0”’“fo Aadi+ Cp Aat Oy A0+ Cny ﬂ ASdt  (A37)
which can be rewritten as
I t t
Eé— Cm& Aa— Omé Ad= Oﬂaj; Aadt+ 0.;6]; AS di (A33)
Now if
I
Ao'—q—g_(—: 9— Om& Aa— Omé A8 (A.39)

then & time bistory of As can be obtained and equation
(A38) can be put in the form

to 1)) ( A
f Aa dt f AS dt Ady
0 0

[5Y 5%
f Aa dt f AS dt Aoy
0 0

&y ta Cm
J;Aadt foAa dt {0,,:}=* Ace L (A40)
£y iy » .
f Aadt f Asdt Agy,
1] 0 : \. J
or
- Oma
DI 7o} = (a0} (A41)

Applying least squares to equation (A41) gives

[D'D] {g”'a}={1)'m,} " (A42)
my
and the solution is
(ol =D (s (443)
L

In order to include the effects of the Cy; and Cy, terms
initially omitted in the force equation, equation (A6) is
rewritten as

A'(Il= C’LaAa—I- OL‘,AB (A44)

where

A¢=%An—0,,ée— O (A45)

Method A may now be iterated to obtain more refined
values of the derivatives. The values of Cp; and Cp,
determined by equations (A35), (A36), (A12a), and (A12b)
are inserted into equation (A45),and a time history of Ay is
computed. New values of (7 and Cy, are computed from

(B'B] {g;;} —{B'Aw) (A46)
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or

If these values
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-

(o} =BBI (Bav,)

of Oy and Oy, are used, & new value of Kj,

and a new time history of Au can be computed, which, if
inserted into equations (A34) and (A36), yield new values

of Cm; and Cn,.

The derivatives Cr, and Cp; are again

determined from equations (A12a) and (A12b) and a new
time history of Ay is computed by using equation (A45);
refined ¢z and Oy, derivatives are found from equation (A46).

The process converges rapidly.
compute Cn_ and Cn, from equation (A43).

Cr, G,y GLB, Cn

After it has converged,
Thus far OL !
» Omgy Cmy, and O, have been determined.

Then (bb—%' mey be determined by rewriting equation
t

(Alle) as
E)C’L) __ 8V
O /, Sz, r Cng
An examination of equation (A12¢) shows that
de_ 1 Ums
Oy, Omi
and from equation (A7d)
bO’L, S
5 =77HSz OLG

All the longitudinal-stability derivatives are now deterrined.

APPENDIX B

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY USING THREE MEASUREMENTS IN TIME-HISTORY FORM
AND ONE SUPPLEMENTAL ASSUMPTION

The three basic measurements used in method B are
incremental load factor, pitching velocity, and elevator

angle

The supplemental assumption made is tha.t Oy [Crmi

is a constant, that is,

Om&= }\Omg (B]-)

For a first approximation the constant is assumed to be equal
to ¥ (see ref. 5).
If the definition

Bt=ratI=(1+NI—2San (B2)

is adopted, a time history of Af may be computed. Then

Gmg'é—l— Gn&&= OﬂléAE (B3)

The integral form of the moment equation (A37) can then

be written

I

755 0=Cn

an di4Cr; f A di4+C, f Asdt (B4

If time histories of incremental load factor, pitching
velocity, and elevator angle are measured and W, ¢, S, V, ¢,
and I are known, then equation (B4) can be put into matrix
form and used directly to compute Cn_, Cms, 20d Ca,.

The derivative Cp, is derived from Cn; by using equation
(B1) and C;, and Cy4 are computed from equations (A12a)

and (A12b)

c
Ca=-C,
. T

3
Ori=Z O
T

These values of Oy, and Cy; are then inserted into equation

(A45)

w ",
Alll='g—SA'n— 01,39— OL&CZ

and a time history of Ay is computed. The values of O,

and (i, are then computed from equation (A44)
A!,b: O_r,aAa—I— OLsAB

Equation (B4) may be\expressed in matrix form as

i

f voz dit
0
i

f 1Aoz dt
0 »
¢

f 2Aa dt
0

t

f °As dt
(1}
¢

f "AS dt
0 -
i

f *As dt
0

fo “At dt
L “at dt
fot’Ag di

29

Aa dt f t'AE dt
0 ’ 0

in
f As d
0

On) 4
“E” {g:i}="q—§{9t}

Applying least squares yields

or

On
[E"E] {g::§=—s—5 {E'6:}

and solving for the derivatives gives

Cla, o
{ m,}—[E”E]— = {B0,)

fad

b

b

6 L

(B5)

(B6)

®7)

(B8)
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b+ K0+ KoM= KA+ K,y fo “As dt (C1)
where c
S| G, eV
L [ T (0,,,&+0,,,é):| (C2a)
Cy.qS
K= 352 (Ot Oy 225 (©2b)
Ss s .
=25 (%—%T—z 0%0,.&) (C20)
k=295 (0, 0o 01,C0,) (©24)
- If it is assumed that
Oﬂ&=)\0ma' (03)
and ]
Cny=2 O, (C4)
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Equation (A44) expressed in matrix form is Applying least squares to equation (B10) gives
) - \ , C
Aoy Ad Ay BBI{ o<} =(B'av:) BL11)
Ay Ady Ays .
and solving for the unknowns results in
Ao Adg OLa _ Ay,
foret=1""t ®9) Ol st
=[B'B|~{ B'Ayx} B12)
Cy,
b € o0,
Aoy, AS, AV | The derivatives ( and —— 55 ! are determined from
equations (Alle), (A12c) and (A74), respectively.
or Thus the derivatives G, Crg, Cry Cigy Cmyy Cumgy Cma
8] ’ o0,
|1BI| {GL“}={A¢1} (B10) | Oay (bal’ 2¢, and 222 are now determined.
Lg DB
APPENDIX C

DETERMINATION OF LONGITUDINAL-STABILITY DERIVATIVES BY USING TWO MEASUREMENTS IN TIME-HISTORY FORM
AND TWO SUPPLEMENTAL ASSUMPTIONS

By the matrix method of reference 4, time-history measure-
ments of the pitching velocity and incremental elevator
angle are used to compute the K values from the relation

these six relations in six unknowns (Ci,, Cr; Crmgs Oy
Cng,nd Cn,) can now be solved simultaneously. The follow-
ing relations for the variables result:

Oba——'%_ %"— 2 (C5)
where
01=77_7'Z [(1 +N) M_Kﬁ_)\ %ﬂ (C6)
an
m b Kﬁ _Kyz,Vm
02_(1+x)< g)(Kz 1+)\K5 X, ) (o))

__ ¢S I K1
One=—155 K7 57m @0 o« Tevm @ Tn e
(C9)
. mV

Cni=5Vm (1+2) <OI"' qS Kl) (©9)

I nV

K,

g5¢ 956
Ony= Cr. Omo (C;O)

c - T

Approximate formulas which give a quicker evaluation
of the derivatives with fair accuracy were derived from
equations (C5), (C8), (C9), and (C10) and are

mV K,

Oz,t,“-"'q—‘s"K—5 (C11)
O e K, (©12)

my QSE 5

1 I (K
Coi~ 1y o5 (B K) (C19)

I B,
Oma = —q—S% KQ"—E Omé
KK,

=05% [ ~Ei—1x (K) tongl  ©9

The set of approximate formulas has been found to. give
results which are usually within the accuracy of the method.
In table VI(c), a comparison is presented between results
computed by using the approximate relations and the more
accurate relations. The set of approximate formulas given
by equations (C11) to (C14) is used in the development of
a modified method C which is given in appendix D.



APPENDIX D
MODIFIED METHOD C

For some special types of longitudinal maneuvers consider-
able information may be determined from a single time
history. If the elevator motion is known to be of the im-
pulse type (a blip of short duration) but its magnitude or
time history is unknown, then the method of appendix C
may be modified slightly to yield some of the stability
derivatives. The method may be used with impulse-type
forcing functions produced by ballistic devices. If the input
is not a pure impulse but resembles oue (that is, a pulse-type
input), then the modified method may be applied after the
clevator motion is zero. Integrals, however, must be evalu-
ated from the zero-time trim condition but the least-squares
procedure is applied only to the time histories after the
clevator motion is zero.

Since the definite integral of an impulse is a step function
and the integral of a step function is a ramp function, let

fo ‘rodt=4A ®1)

ftfan dr di= At
0J0

Substituting these values in the integral form of equation
(A15) which is

K A0+ E, fo ‘A0 d—E, L “ A8 dt— K, fo ‘ ﬁ Tpbdr di=—0
@3

and

D2)

results in
t
K A0+ K, fo A8 di— Ko A— Ky At=—0 D4)
Equation (D4) may be expressed in matrix form as
o ) e 3
A8 L Agdt —1 —t —by
4
Ady j; Abdt —1 —i; —b;
123 Kl
-1 = K. o —
Al, J; A6 dt 1 |2 K:A = ¥ 6, \. (D5)
KA
in
Al, f Addt —1 —i, —d,
0 . /

Equation (D5) is then used to solve for the stability co-
efficients K, K, K:A, and KA.

The following approximate formulas presented in appendix
C are used to compute the stability derivatives (since only
the ratio K/ K is used, the value of A need not be evaluated):

nV K,

OL"R‘_Q—ASTE (D6)

o3 q{% (-x:)

o, I K

Also, it is assumed that

Cny=2Cn;

As indicated previously in appendix A,

¢
OLa=.— Oﬂ&
Z;

0L8=—§; Oﬂé

s I K
«~ 55 Ko, Omi qSE[_K2—1+)\ j7é

(D7)

1 Ka 2 KIKO

Ta +)\)K5:| (D§)

" (DY)

(D10)

(D11)

Thus the analysis of a single time history of pitching velocity can yield considerable information if it is the response to an
clevator impulse function; however, the elevator-effectiveness derivatives cannot be found by this method. In the case of a
unit impulse input (4=1), K,, K, K;, and K, would be determined directly by the method of appendix D and the equations
of appendix C could be used to determine even the elevator-effectiveness derivatives.
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APPENDIX E

DEFINITIONS OF STABILITY PARAMETERS

The stability parameters of the methods presented, not
previously defined in the original list of symbols, can be de-
fined as follows:

ol—mv[x - (142) Vx‘”‘—Kl]

_ m A Ka Kua:,Vm
=0+ () (K 2 B 21
O, =— AC) | Sizide .

L™ "\ 22 /" SV 2a
_ bOL OOL S; be
Cru=(%52) (5 5 (155
Oy a_&) Seze 1
T\ 2 "BV s,

o0, 8,
26 ™S

20, +(02) 0 22
WB e S Ej

OL6=

O«
O (202, Sizd e
LG )8 TV da
.___(aOL S; x,’ 1
Omg= v SV V1.

o0, 8,1z, | 00,

Oma 8 Mg Sz

tEt
[

S —
2% S
g8 [ Cra

7 it 0 |

%
Kg_——<0 O

K, =158 ch qS

(Oz, OLBO’"G) 4

K10="—I— OL 1

ovm Crgme

Ay =Aq——‘% GV K]oAC! _—— Kma— 0L6A5

Af=(14N)6—) %An

I
Ao’=m 6— C ha— CnAA0

A¢=E"—‘ I:T% An—g: (et l)Aa:I

All/_'—g An— Ozéa OL&C!
mV
QkIS' ¢ é— VC’La Cona Ef— — 0.
gSec m m
qS + OLa —q—‘sT—l- OL&
T (C’,,QOL —C1;Cn,)
2
753 (1 ok Oua)
mV
LAWY
gS " e
= Oz,
o+ s,

K;

qSe <0L&Oma_ Om&OLa'i-ng ms)

mV
(G5 0sa)
7 52 (02, Cny—0,Cn,)
8 I mV-l-Oz,-)
g8 e

C’,,,‘i Oe
)‘=C’m5 =1/;&.
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Matrices used in the present report are defined as follows:

Aay
Aa1

Aag
I1Bll=|| -

Acty

Ay
Ad;
Ad,

.

Ad,

[|Cl| is the integrating matrix given in table 1,

1D ]l=

1E =

-
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